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A B S T R A C T

This study examined the effects of spherical core-shell particle inclusions, such as microencapsulated phase
change materials (PCMs), on the thermal deformation behavior of cement-based composites. First, simulations of
volumetric thermal deformation in representative microstructures were carried out, based on the finite element
method (FEM), to predict the effective thermal deformation coefficient of the composites. Excellent agreement
was found between the effective thermal deformation coefficient predicted by FEM and by the effective medium
approximation (EMA) developed by Schapery (1968). Furthermore, the effective thermal deformation coefficient
of cementitious composites with either microencapsulated PCM or quartz particulates was measured. The
measured effective thermal deformation coefficients together with Schapery's model were used to retrieve the
thermal deformation coefficients of the inclusions themselves. The thermal deformation coefficient of PCM
microcapsules was estimated to be similar to that of the shell component due to partial filling of the
microcapsules. The results show a means for (i) retrieving the thermal deformation properties of functional
core-shell inclusions and (ii) for designing cementitious composites with PCMs which find use in the built
environment and high-performance composites.

1. Introduction

In 2013, The American Society of Civil Engineers gave the road
infrastructure in the United States a grade of “D”, and estimated that
$67 billion is spent annually on the repair of deficient or damaged road
pavements [1]. Substantial damage is caused to concrete pavements
due to volume change that results from temperature change—caused by
(i) cement hydration reactions at early ages, over the first 7 days
following concrete placement, and (ii) ambient temperature change, at
later ages (that results in fatigue damage) [2,3]. Microencapsulated
phase change materials (PCMs) have been proposed as a means to
mitigate thermal damage in concrete pavements [4,5]. Microencapsu-
lated PCMs, a core-shell particulate, are thermal energy storage
materials that can store and release latent heat associated with

reversible phase transitions between the liquid and solid phases [6].
In concrete pavements, such storage and release of heat can be
exploited to: (i) reduce early-age temperature rise and (ii) decrease
the amplitude of diurnal temperature oscillations to reduce thermal
fatigue damage [4,5].

PCM particulates with a median diameter on the order of 10 to 20
μm are often produced by an interfacial polymerization process wherein
a polymer shell (e.g., of melamine-formaldehyde) is used to encapsulate
a core material (e.g., alkanes such as paraffin wax). To provide stress-
relief over multiple phase change cycles, typically, the PCM micro-
capsules are only partially filled—as a result, they contain some
internal porosity [6]. Due to the presence of this internal porosity,
and their small size, it is challenging to characterize the material
properties of these core-shell structures. This is especially so in the
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context of thermal deformation behavior when both the core and the
shell would expand (or contract), albeit to different extents. This is an
issue in applications such as concrete pavements, where it is important
to know the thermal deformation coefficients of inclusions that are
embedded in the cementitious matrix so as to quantify their influences
on the volume stability of the overall solid.

The present study aims to assess the influences of PCM microcap-
sules on the effective thermal deformation coefficient of cementitious
composites by complementary approaches including (i) finite element
simulations of volumetric thermal deformation in representative micro-
structures, (ii) effective medium approximations, and (iii) measure-
ments of linear thermal deformation of prismatic composite specimens.
By identifying an effective medium approximation (EMA) capable of
accurately estimating the effective thermal deformation coefficient of
multicomponent composites consisting of a matrix and core-shell
inclusions, a general approach is highlighted (i) for retrieving the
thermal deformation coefficient of core-shell microcapsules or other
particulate inclusions embedded in a continuous matrix and (ii) for
designing cementitious composites with PCMs.

2. Background

2.1. Thermal deformation of solids

The constitutive law for a linearly elastic material considering
thermal effects is given by [7],

σ ε ε σ C ε εC= : ( − ) or = ( − )T ij ijkl kl T kl, (1)

where ε and εT denote the total and thermal strain tensors, respectively,
and C is the stiffness tensor. If the material is isotropic, the components
of the stiffness tensor C can be expressed in terms of the material's
elastic constants according to [8],

C λδ δ G δ δ δ δ= + ( + )ijkl ij kl ik jl il jk (2)

where the Lamé parameter λ and shear modulus G are related to the
Young's modulus E and Poisson's ratio ν according to [8],

λ Eν
ν ν

G E
ν

=
(1 + )(1 − 2 )

and =
2(1 + )

.
(3)

For an isotropic material, the thermal strain εT is related to the imposed
temperature change ΔT according to [7],

ε α T ε α TδI= ( Δ ) or = ΔT T ij ij, (4)

where α is the thermal deformation coefficient and ΔT is defined with
respect to some reference or zero-strain temperature Tref, i.e.,
ΔT=T−Tref [7]. Note that in a homogeneous material that is not
mechanically restrained, ε=εT and the stress field is identically zero
throughout the material. On the other hand, if it is fully restrained then
ε=0 and a stress is induced for ΔT≠0.

2.2. Effective medium approximations

This study considers three simple effective medium approximations
(EMAs) that can be applied to predict the effective thermal deformation
coefficient αeff of composites consisting of two or more constituents. The
parallel model, also known as the rule-of-mixtures (ROM) [9], can be
used to estimate the effective thermal deformation coefficient of a
composite material with N components as a simple volume-weighted
average over the constituent thermal deformation coefficients, i.e. [9],

∑α ϕ α=eff
n

N

n n
=1 (5)

where ϕn and αn are the volume fraction and thermal deformation
coefficient of constituent material n, respectively. Turner [10] sug-
gested that the ROM be adjusted to weigh each component n by their
respective volume fraction ϕn and bulk modulus Kn, such that

α
ϕ K α

ϕ K
=

∑

∑
.eff

n
N

n n n

n
N

n n

=1

=1 (6)

Schapery [11] derived an EMA which gave upper and lower bounds
for the effective thermal deformation coefficient αeff of composites with
N components based on energy conservation considerations. In this
case, αeff was expressed as an average of upper and lower bounds such
that,

Nomenclature

C material/stiffness tensor, GPa
D diameter, μm
E Young's modulus, GPa
G shear modulus, GPa
I identity tensor
K bulk modulus, GPa
L unit cell length, μm
M number of experimental measurements
N number of unit cells or number of constituent materials in

composite
nj unit normal vector to face j of unit cell
T temperature, °C
Tpc PCM melting temperature, °C
Tref reference/zero-strain temperature, °C
u displacement vector, m
u x-displacement, m
v y-displacement, m
w z-displacement, m
w/c water/cement ratio, mass basis

Greek symbols

α thermal deformation coefficient, με/°C

ϕn volume fraction of material n in composite
ρ density, kg/m3

σ Cauchy stress tensor, GPa
ε strain tensor
ν Poisson's ratio

Subscripts

c refers to core material in composite
c+ s refers to core-shell microcapsule
eff refers to effective properties
j refers to face j of unit cell
ls refers to limestone
m refers to matrix material in composite
n refers to constituent material n in composite
p refers to inclusion
q refers to quartz
s refers to shell material in composite

Superscripts

T denotes matrix/vector transpose
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Here, the overline denotes a volume-weighted average over the
constituents, i.e. [11],

∑ ∑ ∑α ϕ α K ϕ K Kα ϕ K α= , = , and = .
n

N

n n
n

N

n n
n

N

n n n
=1 =1 =1 (8)

In addition, KL is given by,
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(9)

and the effective bulk modulus Keff can be estimated as the average of
KL and K , i.e., K K K= ( + )/2eff L . Finally, the deviation Δα in αeff from
the average was expressed as [11],
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(10)

Note that each of the aforementioned EMAs was developed for a
linearly elastic composite featuring isotropic constituent materials with
arbitrary geometry. The effective thermal deformation coefficient
predicted by each EMA depends only on the volume fractions and
thermomechanical properties of the constituent materials but is in-
dependent of their spatial distribution. They can also be extended to a
composite made of any number of constituents. As such, these EMAs are
easily applied to cementitious and other composite materials with more
than one type of inclusion, including both fine aggregates (e.g., quartz
sand) and soft inclusions (e.g., microencapsulated PCM), as well as
coarse aggregates that would be present in a typical concrete pavement.
In addition, several other EMAs have been developed specifically for
two-component composites—further details can be found in Ref. [12].

3. Materials and methods

3.1. Materials

An ASTM C150 [13] compliant Type I/II ordinary portland cement
(OPC) was mixed with deionized (DI) water to prepare cement pastes
(matrix only) and mortars (matrix + inclusions) in accordance with
ASTM C192 [14]. The OPC had a nominal mass-based mineralogical
composition of: 56.5% Ca3SiO5, 18.0% Ca2SiO4, 11.4% Ca4Al2Fe2O10,
6.3% Ca3Al2O6, 4.6% CaCO3, and 1.1% CaSO4 ⋅2H2O. ASTM C778 [15]
compliant graded quartz sand and microencapsulated PCM inclusions
(MPCM24D, Microtek Laboratories) were used as inclusions within the
cement mortars. The microencapsulated PCMs consisted of a paraffin
core encapsulated within a melamine-formaldehyde (MF) shell. The
microencapsulated PCMs were received in the form of dry powders. The
corresponding peak melting temperature and enthalpy of phase change
of microencapsulated PCMs were 27.8°C and 161.2±0.5 kJ/kg
representing the average value over three melting and solidification
cycles.

Cementitious mortars were prepared with various volume fractions
(i.e., dosages) of microencapsulated PCM and/or quartz inclusions at a
water-to-cement ratio (w/c, mass basis) of 0.45. For mortars containing
microencapsulated PCM inclusions only, the inclusions were dosed for
three different volume fractions, namely, 5, 10 and 20 vol.%. For
mortars containing quartz inclusions only, the quartz dosages were 10,
20, and 50 vol.%. For mortars containing mixed inclusions, the total
inclusion volume fraction was fixed at 50 vol.%, where the micro-
encapsulated PCM inclusions comprised 10, 15, or 20 vol.%. The
microencapsulated PCMs were mixed with the anhydrous OPC by hand

prior to the addition of DI water to ensure random and uniform
distribution in the mortar. To enhance the fluidity of the fresh mixtures,
a commercially available water-reducing admixture (MasterGlenium
7500, BASF Corporation) was added at a dosage on the order of 0-to-
1.5 wt.% by mass of cement, depending on the type and dosage of
inclusions present.

3.2. Experimental methods

Thermal deformation coefficient measurements were carried out
using prismatic specimens with various mixture proportions, as de-
scribed above. The specimens were cast in 2.54 cm x 2.54 cm x
28.50 cm molds in accordance with ASTM C157 [16] and cured under
100% relative humidity for the first 24 h at 25°C. Following demolding
after 24 h, the specimens were sealed with aluminum tape and cured in
sealed bags at 25°C for 28 days. Then, the length of each specimen was
measured at 25°C and the specimens were transferred to an environ-
mental chamber (KB024-DA, Darwin Chambers Company) at 45°C, and
stored for 2 h until they reached thermal equilibrium. The fractional
length change (i.e., the linear thermal strain) ΔL/L0 due to temperature
change ΔT = 45°C–25°C was measured with a length comparator, as
illustrated in Fig. 1. Then, the thermal deformation coefficient of the
specimens was calculated according to,

α L
L T

= Δ
Δ

.eff
0 (11)

In addition, elastic thermal strain within the specimens was verified by
also calculating αeff based on a temperature change from 5°C to 45°C
and verifying that the measured αeff was independent of the imposed
temperature change. It was also confirmed that the specimens recov-
ered their initial length when returned to their initial temperature of
25°C. Such elastic stress-strain behavior implies that the thermal
deformation coefficient of cementitious composites would remain
constant across the range of diurnal temperature variations that would
be experienced by a concrete pavement. However, when the concrete's
temperature falls below 0° C, its thermomechanical behavior is

Fig. 1. Photograph of the experimental setup used to measure the effective thermal
deformation coefficient of cementitious composites containing microencapsulated PCMs
and/or quartz sand inclusions.
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complicated by melting and freezing of water within its pores [17] and
thus cannot be treated as simple elastic deformation.

4. Analysis

4.1. Schematic and assumptions

Fig. 2 illustrates the computational cubic unit cells of length L
utilized in this study, along with the associated coordinate system. Free
thermal deformation was simulated numerically in domains with
ordered monodisperse packing arrangements, namely (a) body-cen-
tered cubic (BCC), (b) simple cubic (SC), or (c) face-centered cubic
(FCC) or in domains with randomly distributed (d) monodisperse or (e)
polydisperse microcapsules. The core and shell volume fractions ϕc and
ϕs can be expressed in terms of the average core and shell diameters Dc
and Ds and the unit cell length L according to,

ϕ
N πD

L
ϕ

N π D D
L

=
6

and =
( − )

6c
p c

s
p s c

3

3

3 3

3 (12)

where Np is the number of core-shell particles contained within the unit
cell.

A stochastic packing algorithm [18] was used to generate the size
and location of randomly distributed monodisperse and polydisperse
microcapsules within unit cells of edge length L = 75 μm (Fig. 2d–e).
The algorithm placed microcapsules at random locations within the
unit cell until the desired core volume fraction ϕc was achieved within
0.5%. It ensured that the minimum centroidal distance between two
sphere centers CD was greater than the sum of their radii r1+ r2 [18].
The packing algorithm considered a particle size distribution with
average shell diameter Ds = 18 μm as well as 10th and 95th percentile
shell diameters equal to 9 μm and 33 μm, respectively [18]. All
microcapsules had a shell thickness of 1 μm, i.e., (Ds−Dc)/2=1

μm [18]. Previously, we used the same microstructures to predict the
effective thermal conductivity [19] and elastic moduli [20] of three-
component composites. The size and location of the microcapsules can
be found in supplementary material.

To make the problem mathematically tractable, it was assumed that
(i) all materials were linearly elastic and isotropic, (ii) body forces were
negligible, and (iii) continuous contact was maintained at the material
interfaces, i.e., no sliding or gapping was allowed.

4.2. Governing equations and boundary conditions

The stress field in each component was governed by the steady-state
differential equilibrium equation [8],

σ∇⋅ = 0n (13)

where σn is the local stress tensor in component n referring to the core
(subscript c), shell (subscript s), or matrix (subscript m). The stress σn
and strain εn tensors were related according to the constitutive law
given by Eq. (1). Here, the temperature rise ΔT was imposed by fixing
the temperature at each face of the cube at T=Tref+ΔT such that
solving the steady-state heat diffusion equation resulted in a spatially
uniform temperature T throughout the domain. Additionally, the strain-
displacement relation in each component was given by [8],

ε u u= 1
2

[∇ + (∇ ) ]n n n
T

(14)

where un=[un,vn,wn]T is the displacement vector in component n.
In order to fully define the problem, boundary conditions on each of

the cube's six faces, denoted by index j, were prescribed to represent
free volumetric thermal deformation. For ordered packing arrange-
ments (Fig. 2a–c), the faces at x=0 (j = 1), y=0 (j = 2), and z=0 (j
= 3) were fixed by virtue of symmetry, i.e.,

Fig. 2. Schematic of computational cells with various particle size distributions and packing arrangements used in numerical simulations of free thermal deformation in three-component
composites consisting of spherical microcapsules in a continuous matrix, namely, (a) body-centered cubic (BCC), (b) simple cubic (SC), (c) face-centered cubic (FCC), (d) randomly
distributed monodisperse microcapsules, and (e) randomly distributed polydisperse microcapsules.
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ju n⋅ = 0 for = 1, 2, or3n j (15)

where nj denotes the unit normal vector to face j. The remaining faces
were allowed to expand freely. As such, the traction force on these faces
vanished [8],

σ jn⋅ = 0 for = 4, 5, or6.n j (16)

Moreover, for unit cells with randomly distributed microcapsules
(Fig. 2d–e), all six faces were allowed to expand freely, i.e.,

σ jn⋅ = 0 for = 1, 2, …,or6.n j (17)

4.3. Data processing

Solving the governing Eqs. (1), (13) and (14) along with their
corresponding boundary conditions yields the displacement field
un(x,y,z) in each component of the composite volume initially at V0.
Then, the corresponding change in volume ΔV of the deformed body for
a temperature change of ΔT was used to compute the effective thermal
deformation coefficient αeff (in με/° C, neglecting higher-order strain
terms) according to [7],

α V
V T

= 1
3

Δ
Δ

.eff
0 (18)

4.4. Method of solution

The governing Eqs. (1), (13), and (14) along with the corresponding
boundary conditions [Eqs. (15)– (17)] were solved using the finite
element method with the commercially available finite element solver
COMSOL Multiphysics®. Computation was performed on a single CPU
with two 2.6 GHz processors and 8 GB RAM. Numerical convergence
was verified such that the predicted value of αeff did not change by more
than 0.5% when the minimum element size was decreased by a factor of
2. Numerical convergence was reached using a minimum element size
of 0.2 μm and a maximum element growth rate of 1.5. The number of
finite elements in the computational domain ranged from 66,252 to
534,108. In addition, it was verified that the predicted αeff was
independent of the imposed temperature difference ΔT for 5°C < ΔT
<30°C.

5. Results and discussion

5.1. Numerical simulations

This section uses numerical simulations of free thermal deformation
to elucidate the effect of geometric parameters as well as constituent
material properties on the effective thermal deformation coefficient αeff
of three-component composites consisting of spherical microcapsules in
a continuous matrix. Table 1 outlines the baseline case values of
thermal deformation coefficient α, Young's modulus E, Poisson's ratio
ν, and bulk modulus K used in the simulations. These properties were
chosen to represent a composite consisting of microencapsulated PCM
inclusions in a cementitious matrix [20–23]. Note that the bulk
modulus K is related to the Young's modulus E and Poisson's ratio ν
according to [8],

K E
ν

=
3(1 − 2 )

.
(19)

5.1.1. Effect of computational domain size
Fig. 3 plots the numerically predicted effective thermal deformation

coefficient αeff as a function of the total number of simulated BCC, FCC,
or SC unit cells N in the cubic computational domain for N = 1, 8
(2×2×2), or 27 (3×3×3). Here, unit cells with three sets of core
and shell volume fractions ϕc and ϕs were simulated. Fig. 3 establishes

that αeff was independent of the number of unit cells simulated. The
predicted αeff was also nearly identical for each ordered packing
arrangement (BCC, FCC, or SC). Indeed, the maximum relative differ-
ence between αeff for any two different domain sizes or packing
arrangements was less than 2%. Note that these small variations in
αeff were expected due to the absence of periodicity in the imposed
boundary conditions. Based on this result, a domain consisting of a
single unit cell with BCC packing was used for all further simulations of
domains featuring ordered microcapsules.

5.1.2. Effect of core and shell volume fractions
Fig. 4 plots the numerically predicted effective thermal deformation

coefficient αeff as a function of the core-shell volume fraction ϕc

+s=ϕc+ϕs ranging from 0 to 0.5. The thermomechanical properties
of each constituent material were those of the baseline case (Table 1).
Here, the ratio of core to core-shell volume fractions ϕc/ϕc+s was held
constant and equal to either 0.5 or 0.85. The corresponding core and
shell volume fractions ϕc and ϕs were imposed by fixing either (i) the
core diameter Dc, (ii) the shell diameter Ds, or (iii) the unit cell length L
in Eq. (12). Fig. 4 shows that the effective thermal deformation
coefficient αeff increased linearly with increasing core-shell volume
fraction ϕc+s. This was due to the fact that both the core thermal
deformation coefficient αc and the shell thermal deformation coefficient
αs were larger than that of the matrix αm. In addition, for given core and
shell volume fractions, αeff was the same regardless of which geometric
parameter Dc, Ds, or L was fixed.

Moreover, Fig. 4 also shows predictions from (i) the ROM or parallel
model [Eq. (5)], (ii) Turner's model [Eq. (6)], and (iii) the average of
the upper and lower bounds of Schapery's model [Eq. (7)]. Excellent
agreement was found between the numerical predictions of αeff and
predictions from Schapery's model. The ROM and Turner's model
overestimated and underestimated the numerical predictions, respec-
tively.

5.1.3. Effect of size and spatial distributions
Table 2 reports the effective thermal deformation coefficient αeff

predicted numerically using computational domains with different core
and shell volume fractions ϕc and ϕs and with either ordered mono-
disperse or randomly distributed monodisperse or polydisperse micro-
capsules. Note that very similar values of αeff were obtained for Cases
1–3(ϕc ≈ 0.1, ϕs ≈ 0.04) and also for Cases 4–5(ϕc ≈ 0.2, ϕs ≈ 0.05).
Thus, for a given ϕc and ϕs, αeff did not depend on the packing
arrangement (i.e., ordered or random) or microcapsule size distribution
(i.e., monodisperse or polydisperse). In other words, a single unit cell
with BCC packing was representative of the thermal elastic behavior of
cells with randomly distributed monodisperse or polydisperse micro-
capsules. In light of these results, a computational domain consisting of
a single unit cell with BCC packing was utilized for the remainder of this
study.

Moreover, predictions from Schapery's model [Eq. (7)] were again
in excellent agreement with the numerically predicted αeff and differed
by less than 2% for all cases considered in Table 2.

5.1.4. Effect of constituent thermal deformation coefficients
Fig. 5 plots the numerically predicted effective thermal deformation

Table 1
Baseline case values of thermal deformation coefficient α, Young's modulus E, Poisson's
ratio ν, and bulk modulus K of the core, shell, and matrix materials used in numerical
thermal deformation simulations.

Material Subscript α (με/°C) E (GPa) ν K (GPa) Ref.

Core c 109 0.056 0.499 9.3 [20,21]
Shell s 50 6.3 0.34 6.6 [20,22]
Matrix m 11 22.1 0.15 10 [23]
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coefficient αeff as a function of (a) the core thermal deformation
coefficient αc, (b) the shell thermal deformation coefficient αs, and (c)
the matrix thermal deformation coefficient αm ranging from 0 to 500
με/°C for core volume fraction ϕc = 0.2 and shell volume fraction ϕs =
0.15. Each plot shows two different sets of values αc, αs, or αm between 5
and 400 με/°C in an effort to explore a wide range of variation in
constituent thermal deformation coefficients. Fig. 5 shows that αeff
increased linearly with each constituent's thermal deformation coeffi-
cient.

Moreover, Fig. 5 shows predictions by the ROM, Turner, and
Schapery models. Here also, excellent agreement was observed between
the Schapery model and the numerical predictions over the wide range
of constituent thermal deformation coefficients considered, with a
relative error not exceeding 3%.

5.2. Experimental measurements and property retrieval

This section presents a general method to retrieve the thermal
deformation coefficient of particulate inclusions that are difficult to
measure directly by combining Schapery's model [Eq. (7)], previously
validated numerically, with the measured effective thermal deforma-
tion coefficient. Here, the thermal deformation coefficient αp of the
inclusions was retrieved by least-square fitting the experimentally
measured effective thermal deformation coefficient for M different
inclusion volume fractions ϕi to Schapery's model by minimizing the
sum-of-squares error δ given by,

∑δ α ϕ α ϕ= [ ( ) − ( )] .
i

M

eff exp i eff Schapery i
=1

, ,
2

(20)

5.2.1. Validation
The suggested method for retrieving the inclusion thermal deforma-

tion coefficient was validated by demonstrating its use on experimental
data presented by Walker et al. [24] for cement pastes with crushed
limestone inclusions with volume fraction ϕls ranging from 0 to 0.6.
Additionally, the authors directly measured the thermal deformation
coefficient of the cement paste alone as αm = 9.72 με/°C, and that of the
limestone as αls = 4.4 με/°C by sawing specimens from the parent
stone [24]. Here, the elastic modulus and Poisson's ratio of the
limestone were taken as 31 GPa and 0.25, respectively [25]. Fig. 6
plots the experimentally measured effective thermal deformation
coefficient αeff as a function of limestone volume fraction ϕls [24].
The error bars correspond to an uncertainty of± 5%. Fig. 6 also shows
the best fit obtained with the Schapery model, corresponding to a
retrieved value of αls = 4.3 με/°C. This value of αls agrees very well with
that measured directly by the authors, thus demonstrating that our
suggested approach can be used to obtain accurate estimates of
inclusion thermal expansion coefficients.

5.2.2. Thermal deformation coefficient of PCM microcapsules
Fig. 7a plots the experimentally measured effective thermal defor-

mation coefficient αeff of cement paste with microencapsulated PCM

Fig. 3. Effective thermal deformation coefficient αeff of three-component composites
consisting of spherical microcapsules in a continuous matrix predicted numerically as a
function of the number N of BCC, FCC, or SC unit cells in the cubic computational domain.
The thermomechanical properties of the core, shell, and matrix materials are listed in
Table 1.

Fig. 4. Numerically predicted effective thermal deformation coefficient αeff as a function
of the core-shell volume fraction ϕc+s=ϕc+ϕs for the baseline case (Table 1). Here, the
ratio ϕc/ϕc+s was held constant and equal to 0.5 or 0.85 and the corresponding core and
shell volume fractions ϕc and ϕs were imposed by fixing either (i) the core diameter Dc,
(ii) the shell diameter Ds, or (iii) the unit cell length L.

Table 2
Numerically predicted effective thermal deformation coefficient αeff of composites consisting of ordered monodisperse or randomly distributed monodisperse or polydisperse core-shell
microcapsules in a continuous matrix for the baseline case (Table 1).

Case Packing Size distribution Np L (μm) ϕc ϕs αeff (με/°C) αeff (με/°C) % Error

Numerical Schapery [Eq. (7)]
1 BCC Monodisperse 2 22.2 0.096 0.041 21.2 21.2 0
2 Random Monodisperse 19 75 0.097 0.041 21.0 21.3 1.5
3 Random Polydisperse 22 75 0.095 0.041 20.9 21.1 1.1
4 BCC Monodisperse 2 17.4 0.2 0.046 31.3 31.2 0.2
5 Random Polydisperse 38 75 0.2 0.046 31.7 31.2 1.4
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specimens as a function of microencapsulated PCM volume fraction ϕc

+s ranging from 0 to 0.3. The error bars correspond to one standard
deviation or 68% confidence interval of three measurements. Fig. 7a
shows that αeff slightly increased with increasing ϕc+s, confirming that
the thermal deformation coefficient of the PCM microcapsules was
indeed larger than that of the cementitious matrix. The latter was
measured to be αm = 14.1 με/°C, corresponding to ϕc+s = 0. The
thermal deformation coefficient αc+s of the PCM microcapsules was
retrieved by least-square fitting the experimental measurements of αeff
with Schapery's model, as outlined previously. In this case, the retrieved
value of αc+s was 42 με/°C. Interestingly, this value was similar to the
thermal deformation coefficient of the MF shell, reported in the
literature as αs = 50 με/°C [22].

The PCM microencapsulation process is often carried out at elevated
temperatures around 100°C [6]. During subsequent cooling, the paraf-
finous core contracts more than the shell, i.e., αc> > αs (see Table 1),
leaving some empty space in the PCM microcapsules at room tempera-
ture. Then, upon subsequent heating, the thermal deformation coeffi-
cient αc of the core material has negligible impact on the thermal
deformation coefficient αc+s of the core-shell microcapsule, as the core
is allowed to expand freely without exerting any stress on the shell.
Therefore, the thermal deformation coefficient of the PCM microcap-
sule αc+s is expected to be similar to that of the shell material for
temperatures below 100°C.

Fig. 5. Numerically predicted effective thermal deformation coefficient αeff as a function of (a) core thermal deformation coefficient αc, (b) shell thermal deformation coefficient αs, or (c)
matrix thermal deformation coefficient αm ranging from 0 to 500 με/°C. The core and shell volume fractions were ϕc = 0.2 and ϕs = 0.15.

Fig. 6. Effective thermal deformation coefficient αeff of cement pastes with crushed
limestone inclusions as a function of limestone volume fraction ϕls ranging from 0 to 0.6
measured by Walker et al. [24] and predicted by Schapery's model using the retrieved
value of αls = 4.3 με/°C.
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5.2.3. Thermal deformation coefficient of quartz sand inclusions
Fig. 7b plots the experimentally measured effective thermal defor-

mation coefficient αeff of cement mortar (i.e., cement paste with quartz
sand inclusions) as a function of quartz inclusion volume fraction ϕq

ranging from 0 to 0.5. In this case, the low thermal deformation

coefficient of the quartz sand caused αeff to decrease with increasing
quartz volume fraction ϕq. Here again, the thermal deformation
coefficient of the quartz inclusions αq was determined by least-square
fitting the experimental measurements to the Schapery model. The
elastic modulus Eq and Poisson's ratio νq of quartz were taken, from the
literature, as 73 GPa and 0.17, respectively [26]. Here, the resulting
value of αq was 3.9 με/°C. Note that a wide range of thermal
deformation coefficient values for quartz are reported in the literature,
ranging from 0.5 με/°C for silica (amorphous) [27] to 9.3 με/°C for
quartzite [28].

5.2.4. Mixed inclusion measurements
Fig. 7c plots the experimentally measured effective thermal defor-

mation coefficient αeff of microencapsulated PCM-mortar composite
specimens with both PCM and quartz sand inclusions as a function of
PCM volume fraction ϕc+s ranging from 0 to 0.5. Here, the total
inclusion volume fraction was kept constant for all specimens such that
ϕq+ϕc+s=0.5. In particular, note that αeff for a specimen with ϕc

+s=0.2 and ϕq=0.3 was measured to be 14.0 με/°C while that of the
cementitious matrix was measured earlier as αm = 14.1 με/°C. Thus, the
effect of adding 20 vol.% microencapsulated PCM was “offset” by the
addition of 30 vol.% quartz. Finally, Fig. 7c shows the predictions of
αeff by Schapery's model using the values of αc+s and αq retrieved from
previous experiments (Fig. 7a–b). Excellent agreement was found
between αeff predicted by the Schapery model and measured experi-
mentally. These results demonstrate the ability of Schapery's model to
account for the combined, independent effects of both inclusions on the
effective thermal deformation coefficient of the mortars.

5.2.5. Design rule for thermal deformation equivalence in PCM-mortar
composites

As shown in Fig. 7, the addition of PCM microcapsules tends to
increase the effective thermal deformation coefficient of the composite
while the addition of quartz sand tends to decrease it. Therefore, one
could “compensate” for the increase in αeff caused by the addition of
PCM microcapsules by adding an appropriate amount of quartz sand to
maintain the ratio αeff/αm below some threshold. Fig. 8 plots the
required quartz sand volume fraction ϕq corresponding to a ratio αeff/
αm equal to 1.25, 1, or 0.75, as a function of microencapsulated PCM
volume fraction ϕc+s ranging from 0 to 0.3. Here, Schapery's model was
used with the retrieved values of αc+s and αq to determine ϕq for each
αeff/αm and ϕc+s. Note that for a desired ratio αeff/αm<0.75, PCM

Fig. 7. Experimentally measured thermal deformation coefficient αeff of cement pastes
containing (a) microencapsulated PCM with ϕc+s ranging from 0 to 0.25, (b) quartz sand
with ϕq ranging from 0 to 0.6, or (c) both microencapsulated PCM and quartz sand with
ϕc+s ranging from 0 to 0.25 and ϕq+ϕc+s = 0.5.

Fig. 8. Required quartz sand volume fraction ϕq to ensure that the ratio αeff/αm of a PCM-
mortar composite remains equal to 1.25, 1, or 0.75, plotted as a function of micro-
encapsulated PCM volume fraction ϕc+s ranging from 0 to 0.3.
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volume fractions above ∼0.25 are not feasible as they require a
minimum total inclusion volume fraction ϕc+s+ϕq of 0.85 or higher.
Also, for an allowable ratio of αeff/αm = 1.25, no quartz sand is required
for PCM volume fraction ϕc+s below 0.125.

6. Conclusion

This paper examined the effect of microencapsulated PCMs and
other particulate inclusions on the thermal deformation behavior of
cementitious composites, and presented a convenient approach to
estimate the thermal deformation coefficient of inclusions based on
measured effective properties. The effective thermal deformation
coefficient of three-component core-shell-matrix composites was first
predicted numerically using finite element simulations of free thermal
deformation. It was found to be a function of only the constituents'
volume fractions and thermomechanical properties. Predictions from
the effective medium approximation developed by Schapery were
found to agree well with the numerical results over a wide range of
constituent thermal deformation coefficients. Moreover, the effective
thermal deformation coefficient of cementitious microencapsulated
PCM-composites was measured experimentally for cement paste and
cement mortar with various volume fractions of quartz sand and
microencapsulated PCM. The experimental measurements were used
in conjunction with Schapery's model to retrieve the thermal deforma-
tion coefficient of PCM microcapsules and of quartz sand grains. The
thermal deformation coefficient of the PCM microcapsules was found to
be near that of the shell material, due to the fact that the capsules might
not be completely filled with PCM, thus leaving space inside for the
PCM core to expand. Schapery's model was shown to predict accurately
the effective thermal deformation coefficient of cementitious composite
samples with a mixture of microencapsulated PCM and quartz sand
inclusions based on the previously retrieved properties. Finally, a
design rule was suggested for determining the amount of quartz sand
required to offset the effect of the PCM microcapsules in increasing the
thermal deformation coefficient of PCM-mortar composites. These
results could be useful in modeling the thermal deformation behavior
of pavement sections featuring microencapsulated PCMs for crack
resistance.
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